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Magnetic properties and microstructure of new Fe84�xNb2B14Cux nanocrystalline alloys were investi-
gated. We found that the microstructure was refined and soft magnetic properties of this alloy system
were enhanced with proper Cu addition and annealing conditions. It was also discovered that the mean
grain size firstly increases, then decreases to a minimum, and finally increases again with increasing
annealing temperature for Fe83Nb2B14Cu1 nanocrystalline alloy, and this phenomenon was interpreted
by the grain growth mechanism. Moreover, after annealing at 813 K for 180 s, Fe83Nb2B14Cu1 nanocrys-
talline alloy shows a fine microstructure with mean grain size of 16 nm, and exhibits excellent soft mag-
netic properties, such as high saturation magnetic flux density (1.7 T), low coercivity (7 A/m) and high
permeability (2.8 � 104). The result indicates that this alloy should have a promising application in the
soft magnetic industry.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Fe-based nanocrystalline alloys, due to their excellent soft mag-
netic properties [1], have attracted great attention in physics [2–4],
material science [5] as well as engineering application. They are
widely used in soft magnetic components and devices, such as
transformers, sensors, inductors and so on. In developing magnetic
materials, two extreme cases are mostly of interest from an appli-
cation point of view: one with the most excellent permeability and
the other with the highest magnetic flux density [6]. So far, three
famous kinds of Fe-based nanocrystalline alloys as Finemet [1],
Nanoperm [7,8] and Hitperm [9] have been widely investigated
experimentally [10–13] and theoretically [14–17]. Among these
alloys, Nanoperm shows high saturation magnetic flux density
(1.5–1.7 T) [18], high permeability (104) [19], as well as small mag-
netostriction (�0 ppm) [20]. Therefore, it is favorable for toroidal
cores, choke coils, power transformers, electro-magnetic interfer-
ence, magnetic heads, and magnetic shielding [21,22]. However,
the Nanoperm alloys generally contain relatively large amount
(5–7 at.%) of expensive and easily oxidized elements (e.g. Zr or
Hf), which limit its application to a certain extent [23,24]. Three
requirements should be met in order to obtain the Fe-based nano-
crystalline alloy with not only excellent soft magnetic properties
but also good productivity for industrial application [25]. The first
is the formation of uniform nanostructure with small grain size
and homogeneous distribution that is required to obtain good soft
magnetic properties [26]. The second is a realization of the produc-
tion of the alloy in air and low cost. Fe–Nb–B alloy with low Nb
content less than 3 at.% was chosen to prevent the oxidation and
lower the cost. The third is the achievement of high saturation
magnetic flux density that requires high iron content. For above
reasons, we focused on the new ternary Fe84Nb2B14 amorphous al-
loy containing as much as 84 at.% iron and only 2 at.% refractory Nb
[27]. Therefore, the goal of this study is to realize the Fe84Nb2B14

based alloy with uniform microstructure and excellent soft mag-
netic properties as well. Additionally, Cu has a prominent effect
on the formation of a-Fe nanocrystals and the improvement of soft
magnetic properties in Fe-based nanocrystalline alloys. It was
found that Cu clustering occurs prior to the onset of crystallization,
and the Cu clusters serve as heterogeneous nucleation sites for the
primary crystallization of a-Fe [28], which lead to a uniform
microstructure.

In this paper, Cu in a range of 0–1.5 at.% was added to
Fe84Nb2B14 alloy by a step of 0.25 at.%. Soft magnetic properties
such as saturation magnetic flux density, covercivity, and
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permeability were measured, the variation of grain size for nano-
crystalline alloys, and their correlations with magnetic properties
were also investigated.

2. Experimental details

Fe-based alloy ingots with nominal compositions of
Fe84�xNb2B14Cux (x = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50) were
prepared by arc-melting a mixture of pure Fe (99.99%), Nb
(99.99%), B (99.5%), and Cu (99.99%) under high purity argon atmo-
sphere. Ribbons with a width of about 1 mm and thickness about
20–25 lm were produced by single-roller melt spinning method.
The crystallization temperature (Tx) of as-quenched ribbons was
measured by differential scanning calorimetry (DSC, NETZSCH
404C) with a heating rate of 0.67 K/s. Crystallization treatment
was carried out by treating the as-quenched amorphous specimens
at different temperatures for 180 s under vacuum followed by
water quenching. Microstructure was examined by X-ray diffrac-
tion (XRD, Bruker D8 Advance) with Cu Ka radiation and transmis-
sion electronic microscopy (TEM, TECNAI F20), respectively.
Saturation magnetic flux density (Bs) and coercivity (Hc) were mea-
sured with vibrating sample magnetometer (VSM, Lake shore
7410) under an applied field of 800 kA/m and DC B–H loop tracer
(RIKEN BHS-40), respectively. Initial permeability (li) in the fre-
quency range of 1–101 kHz was measured with vector impedance
analyzer (Agilent 4294A) under a field of 1 A/m.

3. Results and discussion

Fig. 1 shows XRD patterns taken from the free surface of the as-
quenched ribbons for Fe84�xNb2B14Cux (x = 0–1.5) alloys together
with DSC curves. From the XRD patterns, it can be seen that alloys
with proper copper additions (x = 0.50, 0.75, and 1.00) exhibit
Fig. 1. XRD patterns and DSC curves of as-quenched Fe84�xNb2B14Cux alloys.
amorphous single phase. The DSC curves show that the crystalliza-
tion of all these ribbons proceeds in two stages. The decrease of Tx1

and the increase of Tx2 with an increase of Cu content can be seen
as well, thus enlarging the temperature interval (DTx = Tx2–Tx1) be-
tween the two crystallization temperatures. This result indicates
that Cu content seems to enhance the thermal stability of nano-
crystallized alloy to a certain extent.

It can be found obviously in Fig. 2(a) that Bs rapidly increases
from lower than 1.4 T to higher than 1.7 T as increasing annealing
temperature (Ta). This increase can be attributed to the appearance
and growth of ferromagnetic crystalline grains of a-Fe type phase
embedded in the residual amorphous matrix and the increasing
volume fraction of nanocrystalline phase with increasing annealing
temperature. It can be seen from Fig. 2(b) that Hc decreases slightly
at low temperatures and increases firstly to a high value, then
decreases to a minimum and finally increases sharply to an even
higher level for all the annealed alloys, while li changes in
an opposite way as shown in Fig. 2(c). In the annealed
Fe84�xNb2B14Cux alloys, Hc decreases with increasing addition of
Cu at the optimal Ta between Tx1 and Tx2, exhibiting a minimum
Hc of 7 A/m and maximum li of 2.8 � 104 at x = 1.00.

According to the random anisotropy model [29], the soft mag-
netic properties of nanocrystalline materials are ascribed to the
averaging out of the magnetocrystalline anisotropy due to the ran-
dom distribution of the anisotropy axis of the nanoscale grains. The
Hc and li can be expressed as

Hc � pc
K4

1 � D
6

JsA3 ð1Þ
li � pl
J2

s A3

l0K4
1 � D

6 ð2Þ

where A is the exchange stiffness, K1 the local magnetocrystalline
anisotropy constant, Js the saturation polarization, l0 the vacuum
permeability, pc and pu dimensionless pre-factors of the order of
Fig. 2. Soft magnetic properties of annealed Fe84�xNb2B14Cux (x = 0.50, 0.75, and
1.00) alloys versus Ta. (a) Saturation magnetic flux density (Bs), (b) coercivity (Hc),
and (c) initial permeability (li). Lines for eye guide.
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unity. From Eqs. (1) and (2), the coercivity and permeability were
expected to roughly vary with grain size as Hc / D6 and li / 1/D6,
respectively. Therefore, the undulating changes in Hc and li are
attributed to the variation of grain size D with increasing Ta.

Nanocrystals precipitated in the amorphous matrix were iden-
tified as a-Fe phase after annealing at temperatures between Tx1

and Tx2 by XRD, as shown in Fig. 3(a). In order to confirm the above
conjecture, grain sizes at different Ta were estimated from XRD
patterns by Scherrer’s equation. Fig. 3(b) shows the relationship
between grain size and Ta for Fe83Nb2B14Cu1 nanocrystalline alloy.
The DSC curve of as-quenched Fe83Nb2B14Cu1 alloy was also shown
in Fig. 3(b) for comparison. It can be seen that the grain size firstly
increases after Tx1, then decreases to a minimum between Tx1 and
Tx2, and finally increases again at higher temperatures. Further-
more, TEM was used to observe the microstructure of the annealed
Fe83Nb2B14Cu1 alloys for further investigation. It can be seen from
the bright-field TEM images that nanoscale grains precipitate in all
the examined samples while the grain sizes show an obvious dif-
ference. The bright-field images, selected area electron diffraction
(SAED) patterns and grain size distributions of the alloys annealed
for 180 s at 753 K, 813 K, and 873 K were shown in Fig. 4(a–c),
respectively. The SAED patterns indicate that the a-Fe nanocrystals
[19] are randomly oriented in the annealed samples (inset in
Fig. 4a–c). With optimum annealing temperature, uniform and fine
a-Fe grains can be seen in Fig. 4(b). In contrast, after annealing at
lower temperature, a-Fe with average grain size of about 25 nm
can be seen sparsely distributed in the residual amorphous matrix,
as shown in Fig. 4(a); after annealing at higher temperature, coarse
a-Fe with average grain size of about 30 nm can be seen in Fig. 4(c).
Ring halo in Fig. 4(a) indicates the obvious residual amorphous
phase in the sample, the low volume fraction of the nanocrystals
at low annealing temperature was on account of the insufficient
Fig. 3. (a) XRD patterns of Fe83Nb2B14Cu1 alloy after annealing at different
temperatures. (b) Relationship between grain size and Ta of Fe83Nb2B14Cu1

nanocrystalline alloy. DSC curve was also shown.

Fig. 4. Bright-field TEM, selected area diffraction pattern, and the distribution of
gain size of the Fe83Nb2B14Cu1 nanocrystalline alloy. (a) 753 K, (b) 813 K, and (c)
873 K. Blue dotted lines show Gaussian fitting. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
nucleation sites and slow grain growth. To seek a precise descrip-
tion of grain size, the statistical analysis with respect to the grain
size was carried out by analyzing more than 100 spots. By careful
determination of the grain size in software Gatan Digital Micros-
copy Suite, it was found that the mean grain size of the composite
of Fe–Nb–B–Cu with Fe nanograins annealed at 753 K, 813 K, and
873 K are 25.3 nm (r = 6.21), 16.2 nm (r = 3.78), and 30 nm
(r = 8.51), respectively, which are consistent with the result esti-
mated from XRD. The smaller standard deviation also indicates
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the uniform microstructure of the nanocrystalline alloy annealed
at 813 K. This phenomenon is consistent with previous research
[30,31], and can be interpreted by the grain growth mechanism
[32] of the coarsening of the pre-existing fine-crystalline structure
to the nanocrystalline structure. The grain size is considered to be
affected by two factors [33]: the nucleation rate and the grain
growth rate. The growth rate increases with increasing tempera-
ture and the nucleation rate has a maximum at an intermediate
temperature range where the minimum of the grain size arises. It
is verified that the nucleation and crystal growth proceed at very
fast rates near 813 K and the maximum of the nucleation rate
may also occur at this temperature. Therefore, it is obvious that
the microstructure with the smallest grain size can be formed only
at about 813 K.

On the whole, Cu addition broadens the temperature interval
(DTx = Tx2–Tx1) between the two crystallization temperatures, fa-
vors the precipitation of a-Fe, and inhibits the precipitation of
other compounds [25,28,34]. With appropriate Cu addition
(x = 1.00) and annealing conditions, the composite of Fe–Nb–B–
Cu with a-Fe nanograins shows excellent soft magnetic properties.
As the average grain size decreases from 25 nm to 16 nm and then
increases to 30 nm, the Hc decreases from 140 A/m to 7 A/m and
then increases to higher than 200 A/m, while li increases from
1.8 � 103 to 2.8 � 104 and then decreases to lower than 2 � 103,
respectively. The high li is twice as large as that of the previous
ternary Fe84Nb2B14 alloy; and the high Bs up to 1.7 T is much higher
than that of Fe84Nb2B14 [27] and other existing Nanoperm-type al-
loy Fe84.9Nb6B8P1Cu0.1 with more iron and high Nb content [25],
which are 1.38 T and 1.61 T, respectively. Furthermore, the slight
decrease of Hc was due to the release of internal stress in amor-
phous alloys at low Ta (Ta < Tx1). When annealed at higher temper-
atures, it leads to the precipitation of iron–boride compounds like
Fe2B or Fe3B, which are hard magnetic phases. Both the formation
of Fe borides and grain coarsening significantly degrade the soft
magnetic properties. Therefore, Hc decreases slightly at low tem-
peratures, increases firstly to a high value for the coarse a-Fe
grains, then decreases to a minimum for the fine microstructure
and finally increases sharply to an even higher level for the grain
growth and the existence of iron–borides [11], while li has a re-
verse trend.
4. Conclusions

In this work, Nb-poor Fe84�xNb2B14Cux nanocrystalline soft
magnetic alloys with not only high saturation magnetic flux den-
sity but also lower cost were investigated. The results can be sum-
marized as follows:

(1) With appropriate Cu addition, Fe83Nb2B14Cu1 nanocrystal-
line alloy obtained by annealing at 813 K for 180 s shows
uniform microstructure and exhibits high saturation mag-
netic flux density (1.7 T), low coercivity (7 A/m), and high
permeability (2.8 � 104).

(2) The grain size of Fe83Nb2B14Cu1 nanocrystalline alloy
increases firstly after Tx1 then decreases to a minimum for
the refinement of the crystals and finally increases again.
The undulating changes in Hc and li are attributed to the
variation of grain size D with increasing Ta.
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